# Lecture 8: The Tangent Plane

Prof. Weiqing Gu

Math 142: Differential Geometry

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ● ● ●

In this lecture, we will show that condition 3 in the definition of a regular surface S guarantees that for every  $p \in S$ , the set of tangent vectors to the parametrized curves of S, passing through p, constitutes a plane.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In this lecture, we will show that condition 3 in the definition of a regular surface S guarantees that for every  $p \in S$ , the set of tangent vectors to the parametrized curves of S, passing through p, constitutes a plane.

By a *tangent vector* to *S*, at a point  $p \in S$ , we mean the tangent vector  $\alpha'(0)$  of a differentiable parametrized curve  $\alpha : (-\epsilon, \epsilon) \to S$  with  $\alpha(0) = p$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

In this lecture, we will show that condition 3 in the definition of a regular surface S guarantees that for every  $p \in S$ , the set of tangent vectors to the parametrized curves of S, passing through p, constitutes a plane.

By a *tangent vector* to *S*, at a point  $p \in S$ , we mean the tangent vector  $\alpha'(0)$  of a differentiable parametrized curve  $\alpha : (-\epsilon, \epsilon) \to S$  with  $\alpha(0) = p$ .

#### Proposition

Let  $\mathbf{x} : U \subset \mathbb{R}^2 \to S$  be a parametrization of a regular surface S and let  $q \in U$ . The vector subspace of dimension 2,

$$d\mathbf{x}_q(\mathbb{R}^2) \subset \mathbb{R}^3,$$

coincides with the set of tangent vectors to S and  $\mathbf{x}(q)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Proof.

・ロト・白 ・ キャー・ キャー シック

Proof.

By the above proposition, the plane  $d\mathbf{x}_q(\mathbb{R}^2)$ , which passes through  $\mathbf{x}(q) = p$ , does not depend on the parametrization  $\mathbf{x}$ . This plane will be called the *tangent plane* to S at p and will be denoted  $T_p(S)$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● ●



1. Basis of  $T_p(S)$ :

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆○ ◆ ○ ◆

- 1. Basis of  $T_p(S)$ :
- 2. The coordinate of  $w \in T_p(S)$  with respect to  $\mathbf{x}_u, \mathbf{x}_v$ :

1. Basis of  $T_p(S)$ :

2. The coordinate of  $w \in T_p(S)$  with respect to  $\mathbf{x}_u, \mathbf{x}_v$ :

### 3. Normal Vector N(p) of $T_p(S)$ :

By fixing a parametrization  $\mathbf{x} : U \subset \mathbb{R}^2 \to S$  at  $p \in S$ , we can make a definite choice of a unit normal vector at each point  $q \in \mathbf{x}(U)$  by the rule

$$N(q) = rac{\mathbf{x}_u \wedge \mathbf{x}_p}{\|\mathbf{x}_u \wedge \mathbf{x}_p\|}(q).$$

Thus, we obtain a differentiable map  $N : \mathbf{x}(U) \to \mathbb{R}^3$ .

◆□ → ◆□ → ◆ = → ≤ → ○ < ○</p>

### The Differential of a Map

#### Moving Between Surfaces

With the notion of a tangent plane, we can talk about the differential of a (differentiable) map between surfaces. Let  $S_1$  and  $S_2$  be two regular surfaces and let  $\varphi : V \subset S_1 \to S_2$  be a differentiable mapping of an open set V of  $S_1$  into  $S_2$ . If  $p \in V$ , we know that every tangent vector  $w \in T_p(S_1)$  is the velocity vector  $\alpha'(0)$  of a differentiable parametrized curve  $\alpha : (-\epsilon, \epsilon) \to V$  with  $\alpha(0) = p$ . The curve  $\beta = \varphi \circ \alpha$  is such that  $\beta(0) = \varphi(p)$ , and therefore  $\beta'(0)$  is a vector of  $T_{\varphi(p)}(S_2)$ .

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

### The Differential of a Map

#### Moving Between Surfaces

With the notion of a tangent plane, we can talk about the differential of a (differentiable) map between surfaces. Let  $S_1$  and  $S_2$  be two regular surfaces and let  $\varphi : V \subset S_1 \to S_2$  be a differentiable mapping of an open set V of  $S_1$  into  $S_2$ . If  $p \in V$ , we know that every tangent vector  $w \in T_p(S_1)$  is the velocity vector  $\alpha'(0)$  of a differentiable parametrized curve  $\alpha : (-\epsilon, \epsilon) \to V$  with  $\alpha(0) = p$ . The curve  $\beta = \varphi \circ \alpha$  is such that  $\beta(0) = \varphi(p)$ , and therefore  $\beta'(0)$  is a vector of  $T_{\varphi(p)}(S_2)$ .

#### Proposition

In the discussion above, given w, the vector  $\beta'(0)$  does not depend on the choice of  $\alpha$ . The map  $d\varphi_p : T_p(S_1) \to T_{\varphi(p)}(S_2)$  defined by  $d\varphi_p(w) = \beta'(0)$  is linear.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

## The Differential of a Map

#### Moving Between Surfaces

With the notion of a tangent plane, we can talk about the differential of a (differentiable) map between surfaces. Let  $S_1$  and  $S_2$  be two regular surfaces and let  $\varphi : V \subset S_1 \to S_2$  be a differentiable mapping of an open set V of  $S_1$  into  $S_2$ . If  $p \in V$ , we know that every tangent vector  $w \in T_p(S_1)$  is the velocity vector  $\alpha'(0)$  of a differentiable parametrized curve  $\alpha : (-\epsilon, \epsilon) \to V$  with  $\alpha(0) = p$ . The curve  $\beta = \varphi \circ \alpha$  is such that  $\beta(0) = \varphi(p)$ , and therefore  $\beta'(0)$  is a vector of  $T_{\varphi(p)}(S_2)$ .

#### Proposition

In the discussion above, given w, the vector  $\beta'(0)$  does not depend on the choice of  $\alpha$ . The map  $d\varphi_p : T_p(S_1) \to T_{\varphi(p)}(S_2)$  defined by  $d\varphi_p(w) = \beta'(0)$  is linear.

#### Definition

The linear map  $d\varphi_p$  is called the *differential* of  $\varphi$  at  $p \in S_1$ . In a similar way we define the differential of a (differentiable) function  $f: U \subset S \to \mathbb{R}$  at  $p \in U$  as a linear map  $df_p: T_p(S) \to \mathbb{R}$ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲□▶ ▲□▶ ▲□▶

Let  $v \in \mathbb{R}^3$  be a unit vector and let  $h : S \to \mathbb{R}$ ,  $h(p) = v \cdot p$ ,  $p \in S$ , be the height function. To compute  $dh_p(w)$ ,  $w \in T_p(S)$ ,

・ロト・4回ト・4三ト・4回ト・4ロト

Key Techniques on Using

- Differentiation
- ► Tangent Plane
- Inverse Function Theorem

Key Techniques on Using

- Differentiation
- Tangent Plane
- Inverse Function Theorem

#### First,

Try your best to make connections that set up some equations that you can differentiate

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Key Techniques on Using

- Differentiation
- Tangent Plane
- Inverse Function Theorem

#### First,

- Try your best to make connections that set up some equations that you can differentiate
- Try to set your coordinates smartly to use the tangent plane

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

Key Techniques on Using

- Differentiation
- Tangent Plane
- Inverse Function Theorem

#### First,

- Try your best to make connections that set up some equations that you can differentiate
- Try to set your coordinates smartly to use the tangent plane
- Try to set up certain functional relationships so that you can use the Inverse Function Theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

#### Proposition

If  $S_1$  and  $S_2$  are regular surfaces and  $\varphi : U \subset S_1 \to S_2$  is a differentiable mapping of an open set  $U \subset S_1$  such that the differential  $d\varphi_p$  of  $\varphi$  at  $p \in U$  is an isomorphism, then  $\varphi$  is a local diffeomorphism at p.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

### Do Carmo, p. 90, #15

Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

### Solution

◆□ > < □ > < Ξ > < Ξ > < Ξ > < □ > < □ > <</p>

### Do Carmo, p. 90, #15

Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

#### Solution

Without loss of generality, assume that all normals pass through the origin.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ●

### Do Carmo, p. 90, #15

Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

#### Solution

Without loss of generality, assume that all normals pass through the origin. Let  $\mathbf{x}(u, v)$  be a parametrization of S at p. Say  $\mathbf{x}(u, v) = (x(u, v), y(u, v), z(u, v))$ . To show that the image of  $\mathbf{x}$  is contained in a sphere, we will show that  $||x(u, v)||^2$  is constant.

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ● ● ●

### Do Carmo, p. 90, #15

Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

#### Solution

Without loss of generality, assume that all normals pass through the origin. Let  $\mathbf{x}(u, v)$  be a parametrization of S at p. Say  $\mathbf{x}(u, v) = (x(u, v), y(u, v), z(u, v))$ . To show that the image of  $\mathbf{x}$  is contained in a sphere, we will show that  $||x(u, v)||^2$  is constant.

Since all the normals to the surface pass through the origin, we may write  $k(u, v)N(u, v) = \mathbf{x}(u, v)$ , where N(u, v) is the normal to the surface at the point  $\mathbf{x}(u, v)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

#### Do Carmo, p. 90, #15

Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

#### Solution

Without loss of generality, assume that all normals pass through the origin. Let  $\mathbf{x}(u, v)$  be a parametrization of S at p. Say  $\mathbf{x}(u, v) = (x(u, v), y(u, v), z(u, v))$ . To show that the image of  $\mathbf{x}$  is contained in a sphere, we will show that  $||x(u, v)||^2$  is constant.

Since all the normals to the surface pass through the origin, we may write  $k(u, v)N(u, v) = \mathbf{x}(u, v)$ , where N(u, v) is the normal to the surface at the point  $\mathbf{x}(u, v)$ . Then we compute

$$\begin{aligned} \frac{\partial}{\partial u} \|\mathbf{x}(u,v)\|^2 &= \frac{\partial}{\partial u} (x^2(u,v) + y^2(u,v) + z^2(u,v)) \\ &= 2x(u,v) \frac{\partial x}{\partial u} + 2y(u,v) \frac{\partial y}{\partial u} + 2z(u,v) \frac{\partial z}{\partial u} \\ &= 2kN \cdot \mathbf{x}_u = 0. \end{aligned}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

### Solution (cont'd)

Similarly,  $\frac{\partial}{\partial v} \|x(u,v)\|^2 = 2kN \cdot \mathbf{x}_v = 0$ . Thus,  $\|\mathbf{x}(u,v)\|^2$  is constant, so  $\mathbf{x}(u,v)$  is contained in a sphere. By the connectedness of *S*, *S* must lie on the same sphere.

#### Solution (cont'd)

Similarly,  $\frac{\partial}{\partial v} \|x(u,v)\|^2 = 2kN \cdot \mathbf{x}_v = 0$ . Thus,  $\|\mathbf{x}(u,v)\|^2$  is constant, so  $\mathbf{x}(u,v)$  is contained in a sphere. By the connectedness of *S*, *S* must lie on the same sphere.

#### Remark

Let  $f : \mathbb{R}^2 \to \mathbb{R}$  be given by  $f(u, v) = ||\mathbf{x}(u, v)||^2$ . Then  $df_p = \left(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right) = (0, 0)$  by Proposition 9, so f is constant on U.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

### Solution (cont'd)

Similarly,  $\frac{\partial}{\partial v} \|x(u, v)\|^2 = 2kN \cdot \mathbf{x}_v = 0$ . Thus,  $\|\mathbf{x}(u, v)\|^2$  is constant, so  $\mathbf{x}(u, v)$  is contained in a sphere. By the connectedness of *S*, *S* must lie on the same sphere.

#### Remark

Let  $f : \mathbb{R}^2 \to \mathbb{R}$  be given by  $f(u, v) = ||\mathbf{x}(u, v)||^2$ . Then  $df_p = \left(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right) = (0, 0)$  by Proposition 9, so f is constant on U.

#### Remark

We cannot use a similar method to show #4, p. 23, because if we show that ||x(t)|| is constant, then  $\mathbf{x}(t)$  lies on a sphere, but this does not imply that  $\mathbf{x}(t)$  is contained in a circle.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Do Carmo, p. 90, #18

Prove that if a regular surface S meets a plane P in a single point p, then this plane coincides with the tangent plane of S at p.

◆□ > <□ > < Ξ > < Ξ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Do Carmo, p. 90, #18

Prove that if a regular surface S meets a plane P in a single point p, then this plane coincides with the tangent plane of S at p.

#### Solution

Let us set up a coordinate system with the origin at p and with P coinciding with the xy plane. Since S meets P only at p, p must be a critical point of z when we view a neighborhood of p as a graph of z = f(x, y).

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ● ● ●

#### Do Carmo, p. 90, #18

Prove that if a regular surface S meets a plane P in a single point p, then this plane coincides with the tangent plane of S at p.

#### Solution

Let us set up a coordinate system with the origin at p and with P coinciding with the xy plane. Since S meets P only at p, p must be a critical point of z when we view a neighborhood of p as a graph of z = f(x, y).

To show that  $T_p(S) = P$ , it suffices to show that  $T_p(S) \subset P$ , since dim  $T_p(S) = \dim P = 2$ .

#### Do Carmo, p. 90, #18

Prove that if a regular surface S meets a plane P in a single point p, then this plane coincides with the tangent plane of S at p.

#### Solution

Let us set up a coordinate system with the origin at p and with P coinciding with the xy plane. Since S meets P only at p, p must be a critical point of z when we view a neighborhood of p as a graph of z = f(x, y).

To show that  $T_p(S) = P$ , it suffices to show that  $T_p(S) \subset P$ , since dim  $T_p(S) = \dim P = 2$ .

Let  $v \in T_p(S)$ . Then there is some  $\alpha : (-\epsilon, \epsilon) \to S$  with  $\alpha(0) = p$  such that  $v = \alpha'(0) = (x'(0), y'(0), z'(0))$ . Since z(0) is a critical point of 0, it follows that z'(0) = 0. Then  $v = (x'(0), y'(0), 0) \in P$ . Thus,  $T_p(S) \subset P$ .

◆□ → ◆□ → ◆目 → ◆目 → ◆□ →

### Something Useful Later On

Say z = f(x, y) and  $p = (x_0, y_0)$  is the critical point of the function z = f(x, y) (i.e.,  $\frac{\partial f}{\partial x}(p) = \frac{\partial f}{\partial y}(p) = 0$ ). Now, using Taylor expansion, we have

$$f(x + x_0, y + y_0) = f(x_0, y_0) + \underbrace{\left(\frac{\partial f}{\partial x}(p) - \frac{\partial f}{\partial y}(p)\right)}_{H} \begin{pmatrix} y - x_0 \\ y - y_0 \end{pmatrix} + (x - x_0 - y - y_0) \underbrace{\left(\frac{\partial^2 f}{\partial x^2}(p) - \frac{\partial^2 f}{\partial xy}(p)\right)}_{M} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} + \cdots,$$

or

$$f(x + x_0, y + y_0) - f(x_0, y_0) = \begin{pmatrix} x - x_0 & y - y_0 \end{pmatrix} M \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}.$$

If *M* is positive definite, then  $p(x_0, y_0)$  is a minimum point since  $f(x + x_0, y + y_0) > f(x_0, y_0)$  and if *M* is negative definite, then  $p(x_0, y_0)$  is a maximum point.

#### < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □