Lecture 8: The Tangent Plane

Prof. Weiqing Gu

Math 142:
Differential Geometry

The Tangent Plane

In this lecture, we will show that condition 3 in the definition of a regular surface S guarantees that for every $p \in S$, the set of tangent vectors to the parametrized curves of S, passing through p, constitutes a plane.

The Tangent Plane

In this lecture, we will show that condition 3 in the definition of a regular surface S guarantees that for every $p \in S$, the set of tangent vectors to the parametrized curves of S, passing through p, constitutes a plane.

By a tangent vector to S, at a point $p \in S$, we mean the tangent vector $\alpha^{\prime}(0)$ of a differentiable parametrized curve $\alpha:(-\epsilon, \epsilon) \rightarrow S$ with $\alpha(0)=p$.

The Tangent Plane

In this lecture, we will show that condition 3 in the definition of a regular surface S guarantees that for every $p \in S$, the set of tangent vectors to the parametrized curves of S, passing through p, constitutes a plane.

By a tangent vector to S, at a point $p \in S$, we mean the tangent vector $\alpha^{\prime}(0)$ of a differentiable parametrized curve $\alpha:(-\epsilon, \epsilon) \rightarrow S$ with $\alpha(0)=p$.

Proposition
Let $\mathbf{x}: U \subset \mathbb{R}^{2} \rightarrow S$ be a parametrization of a regular surface S and let $q \in U$. The vector subspace of dimension 2,

$$
d \mathbf{x}_{q}\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{3}
$$

coincides with the set of tangent vectors to S and $\mathbf{x}(q)$.

The Tangent Plane Proof.

The Tangent Plane

 Proof.By the above proposition, the plane $d \mathbf{x}_{q}\left(\mathbb{R}^{2}\right)$, which passes through $\mathbf{x}(q)=p$, does not depend on the parametrization \mathbf{x}. This plane will be called the tangent plane to S at p and will be denoted $T_{p}(S)$.

The Tangent Plane

1. Basis of $T_{p}(S)$:

The Tangent Plane

1. Basis of $T_{p}(S)$:
2. The coordinate of $w \in T_{p}(S)$ with respect to $\mathbf{x}_{u}, \mathbf{x}_{v}$:

The Tangent Plane

1. Basis of $T_{p}(S)$:
2. The coordinate of $w \in T_{p}(S)$ with respect to $\mathbf{x}_{u}, \mathbf{x}_{v}$:
3. Normal Vector $N(p)$ of $T_{p}(S)$:

By fixing a parametrization $\mathrm{x}: U \subset \mathbb{R}^{2} \rightarrow S$ at $p \in S$, we can make a definite choice of a unit normal vector at each point $q \in \mathbf{x}(U)$ by the rule

$$
N(q)=\frac{\mathbf{x}_{u} \wedge \mathbf{x}_{p}}{\left\|\mathbf{x}_{u} \wedge \mathbf{x}_{p}\right\|}(q) .
$$

Thus, we obtain a differentiable map $N: \mathbf{x}(U) \rightarrow \mathbb{R}^{3}$.

The Differential of a Map

Moving Between Surfaces

With the notion of a tangent plane, we can talk about the differential of a (differentiable) map between surfaces. Let S_{1} and S_{2} be two regular surfaces and let $\varphi: V \subset S_{1} \rightarrow S_{2}$ be a differentiable mapping of an open set V of S_{1} into S_{2}. If $p \in V$, we know that every tangent vector $w \in T_{p}\left(S_{1}\right)$ is the velocity vector $\alpha^{\prime}(0)$ of a differentiable parametrized curve $\alpha:(-\epsilon, \epsilon) \rightarrow V$ with $\alpha(0)=p$. The curve $\beta=\varphi \circ \alpha$ is such that $\beta(0)=\varphi(p)$, and therefore $\beta^{\prime}(0)$ is a vector of $T_{\varphi(p)}\left(S_{2}\right)$.

The Differential of a Map

Moving Between Surfaces

With the notion of a tangent plane, we can talk about the differential of a (differentiable) map between surfaces. Let S_{1} and S_{2} be two regular surfaces and let $\varphi: V \subset S_{1} \rightarrow S_{2}$ be a differentiable mapping of an open set V of S_{1} into S_{2}. If $p \in V$, we know that every tangent vector $w \in T_{p}\left(S_{1}\right)$ is the velocity vector $\alpha^{\prime}(0)$ of a differentiable parametrized curve $\alpha:(-\epsilon, \epsilon) \rightarrow V$ with $\alpha(0)=p$. The curve $\beta=\varphi \circ \alpha$ is such that $\beta(0)=\varphi(p)$, and therefore $\beta^{\prime}(0)$ is a vector of $T_{\varphi(p)}\left(S_{2}\right)$.

Proposition

In the discussion above, given w, the vector $\beta^{\prime}(0)$ does not depend on the choice of α. The map $d \varphi_{p}: T_{p}\left(S_{1}\right) \rightarrow T_{\varphi(p)}\left(S_{2}\right)$ defined by $d \varphi_{p}(w)=\beta^{\prime}(0)$ is linear.

The Differential of a Map

Moving Between Surfaces

With the notion of a tangent plane, we can talk about the differential of a (differentiable) map between surfaces. Let S_{1} and S_{2} be two regular surfaces and let $\varphi: V \subset S_{1} \rightarrow S_{2}$ be a differentiable mapping of an open set V of S_{1} into S_{2}. If $p \in V$, we know that every tangent vector $w \in T_{p}\left(S_{1}\right)$ is the velocity vector $\alpha^{\prime}(0)$ of a differentiable parametrized curve $\alpha:(-\epsilon, \epsilon) \rightarrow V$ with $\alpha(0)=p$. The curve $\beta=\varphi \circ \alpha$ is such that $\beta(0)=\varphi(p)$, and therefore $\beta^{\prime}(0)$ is a vector of $T_{\varphi(p)}\left(S_{2}\right)$.

Proposition

In the discussion above, given w, the vector $\beta^{\prime}(0)$ does not depend on the choice of α. The map $d \varphi_{p}: T_{p}\left(S_{1}\right) \rightarrow T_{\varphi(p)}\left(S_{2}\right)$ defined by $d \varphi_{p}(w)=\beta^{\prime}(0)$ is linear.

Definition
The linear map $d \varphi_{p}$ is called the differential of φ at $p \in S_{1}$. In a similar way we define the differential of a (differentiable) function $f: U \subset S \rightarrow \mathbb{R}$ at $p \in U$ as a linear map $d f_{p}: T_{p}(S) \rightarrow \mathbb{R}$.

Example 1

Let $v \in \mathbb{R}^{3}$ be a unit vector and let $h: S \rightarrow \mathbb{R}, h(p)=v \cdot p, p \in S$, be the height function. To compute $d h_{p}(w), w \in T_{p}(S)$,

Helpful Hints

Key Techniques on Using

- Differentiation
- Tangent Plane
- Inverse Function Theorem

Helpful Hints

Key Techniques on Using

- Differentiation
- Tangent Plane
- Inverse Function Theorem

First,

- Try your best to make connections that set up some equations that you can differentiate

Helpful Hints

Key Techniques on Using

- Differentiation
- Tangent Plane
- Inverse Function Theorem

First,

- Try your best to make connections that set up some equations that you can differentiate
- Try to set your coordinates smartly to use the tangent plane

Helpful Hints

Key Techniques on Using

- Differentiation
- Tangent Plane
- Inverse Function Theorem

First,

- Try your best to make connections that set up some equations that you can differentiate
- Try to set your coordinates smartly to use the tangent plane
- Try to set up certain functional relationships so that you can use the Inverse Function Theorem

Examples

Proposition

If S_{1} and S_{2} are regular surfaces and $\varphi: U \subset S_{1} \rightarrow S_{2}$ is a differentiable mapping of an open set $U \subset S_{1}$ such that the differential $d \varphi_{p}$ of φ at $p \in U$ is an isomorphism, then φ is a local diffeomorphism at p.

Examples

Do Carmo, p. 90, \#15
Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Solution

Examples

Do Carmo, p. 90, \#15
Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Solution

Without loss of generality, assume that all normals pass through the origin.

Examples

Do Carmo, p. 90, \#15
Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Solution

Without loss of generality, assume that all normals pass through the origin. Let $\mathbf{x}(u, v)$ be a parametrization of S at p. Say $\mathbf{x}(u, v)=(x(u, v), y(u, v), z(u, v))$. To show that the image of \mathbf{x} is contained in a sphere, we will show that $\|x(u, v)\|^{2}$ is constant.

Examples

Do Carmo, p. 90, \#15
Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Solution

Without loss of generality, assume that all normals pass through the origin. Let $\mathbf{x}(u, v)$ be a parametrization of S at p. Say $\mathbf{x}(u, v)=(x(u, v), y(u, v), z(u, v))$. To show that the image of \mathbf{x} is contained in a sphere, we will show that $\|x(u, v)\|^{2}$ is constant.

Since all the normals to the surface pass through the origin, we may write $k(u, v) N(u, v)=\mathbf{x}(u, v)$, where $N(u, v)$ is the normal to the surface at the point $\mathbf{x}(u, v)$.

Examples

Do Carmo, p. 90, \#15
Show that if all normals to a connected surface pass through a fixed point, the surface is contained in a sphere.

Solution

Without loss of generality, assume that all normals pass through the origin. Let $\mathbf{x}(u, v)$ be a parametrization of S at p. Say $\mathbf{x}(u, v)=(x(u, v), y(u, v), z(u, v))$. To show that the image of \mathbf{x} is contained in a sphere, we will show that $\|x(u, v)\|^{2}$ is constant.

Since all the normals to the surface pass through the origin, we may write $k(u, v) N(u, v)=\mathbf{x}(u, v)$, where $N(u, v)$ is the normal to the surface at the point $\mathbf{x}(u, v)$. Then we compute

$$
\begin{aligned}
\frac{\partial}{\partial u}\|\mathbf{x}(u, v)\|^{2} & =\frac{\partial}{\partial u}\left(x^{2}(u, v)+y^{2}(u, v)+z^{2}(u, v)\right) \\
& =2 x(u, v) \frac{\partial x}{\partial u}+2 y(u, v) \frac{\partial y}{\partial u}+2 z(u, v) \frac{\partial z}{\partial u} \\
& =2 k N \cdot \mathbf{x}_{u}=0
\end{aligned}
$$

Examples

Solution (cont'd)

Similarly, $\frac{\partial}{\partial v}\|x(u, v)\|^{2}=2 k N \cdot \mathbf{x}_{v}=0$. Thus, $\|\mathbf{x}(u, v)\|^{2}$ is constant, so $\mathbf{x}(u, v)$ is contained in a sphere. By the connectedness of S, S must lie on the same sphere.

Examples

Solution (cont'd)

Similarly, $\frac{\partial}{\partial v}\|x(u, v)\|^{2}=2 k N \cdot \mathbf{x}_{v}=0$. Thus, $\|\mathbf{x}(u, v)\|^{2}$ is constant, so $\mathbf{x}(u, v)$ is contained in a sphere. By the connectedness of S, S must lie on the same sphere.

Remark
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(u, v)=\|\mathbf{x}(u, v)\|^{2}$. Then $d f_{p}=\left(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right)=(0,0)$ by Proposition 9 , so f is constant on U.

Examples

Solution (cont'd)

Similarly, $\frac{\partial}{\partial v}\|x(u, v)\|^{2}=2 k N \cdot \mathbf{x}_{v}=0$. Thus, $\|\mathbf{x}(u, v)\|^{2}$ is constant, so $\mathbf{x}(u, v)$ is contained in a sphere. By the connectedness of S, S must lie on the same sphere.

Remark

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(u, v)=\|\mathbf{x}(u, v)\|^{2}$. Then $d f_{p}=\left(\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right)=(0,0)$ by Proposition 9 , so f is constant on U.

Remark
We cannot use a similar method to show \#4, p. 23, because if we show that $\|x(t)\|$ is constant, then $\mathbf{x}(t)$ lies on a sphere, but this does not imply that $\mathbf{x}(t)$ is contained in a circle.

Examples

Do Carmo, p. 90, \#18
Prove that if a regular surface S meets a plane P in a single point p, then this plane coincides with the tangent plane of S at p.

Examples

Do Carmo, p. 90, \#18
Prove that if a regular surface S meets a plane P in a single point p, then this plane coincides with the tangent plane of S at p.

Solution
Let us set up a coordinate system with the origin at p and with P coinciding with the $x y$ plane. Since S meets P only at p, p must be a critical point of z when we view a neighborhood of p as a graph of $z=f(x, y)$.

Examples

Do Carmo, p. 90, \#18
Prove that if a regular surface S meets a plane P in a single point p, then this plane coincides with the tangent plane of S at p.

Solution
Let us set up a coordinate system with the origin at p and with P coinciding with the $x y$ plane. Since S meets P only at p, p must be a critical point of z when we view a neighborhood of p as a graph of $z=f(x, y)$.

To show that $T_{p}(S)=P$, it suffices to show that $T_{p}(S) \subset P$, since $\operatorname{dim} T_{p}(S)=\operatorname{dim} P=2$.

Examples

Do Carmo, p. 90, \#18
Prove that if a regular surface S meets a plane P in a single point p, then this plane coincides with the tangent plane of S at p.

Solution
Let us set up a coordinate system with the origin at p and with P coinciding with the $x y$ plane. Since S meets P only at p, p must be a critical point of z when we view a neighborhood of p as a graph of $z=f(x, y)$.

To show that $T_{p}(S)=P$, it suffices to show that $T_{p}(S) \subset P$, since $\operatorname{dim} T_{p}(S)=\operatorname{dim} P=2$.

Let $v \in T_{p}(S)$. Then there is some $\alpha:(-\epsilon, \epsilon) \rightarrow S$ with $\alpha(0)=p$ such that $v=\alpha^{\prime}(0)=\left(x^{\prime}(0), y^{\prime}(0), z^{\prime}(0)\right)$. Since $z(0)$ is a critical point of 0 , it follows that $z^{\prime}(0)=0$. Then $v=\left(x^{\prime}(0), y^{\prime}(0), 0\right) \in P$. Thus, $T_{p}(S) \subset P$.

Something Useful Later On

Say $z=f(x, y)$ and $p=\left(x_{0}, y_{0}\right)$ is the critical point of the function $z=f(x, y)$ (i.e., $\frac{\partial f}{\partial x}(\mathrm{p})=\frac{\partial f}{\partial y}(\mathrm{p})=0$). Now, using Taylor expansion, we have

$$
\begin{aligned}
f\left(x+x_{0}, y+y_{0}\right) & =f\left(x_{0}, y_{0}\right)+\left(\frac{\partial f}{\partial x}(p) \xrightarrow{\left.\frac{\partial f}{\partial y}(p)\right)}\left(\begin{array}{l}
0 \\
x-x_{0} \\
y-y_{0}
\end{array}\right)\right. \\
& +\left(\begin{array}{ll}
x-x_{0} & y-y_{0}
\end{array}\right) \underbrace{\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}(p) & \frac{\partial^{2} f}{\partial x y}(p) \\
\frac{\partial^{2} f}{\partial x y}(p) & \frac{\partial^{2} f}{\partial y^{2}}(p)
\end{array}\right)}_{M}\binom{x-x_{0}}{y-y_{0}}+\cdots,
\end{aligned}
$$

or

$$
f\left(x+x_{0}, y+y_{0}\right)-f\left(x_{0}, y_{0}\right)=\left(\begin{array}{ll}
x-x_{0} & y-y_{0}
\end{array}\right) M\binom{x-x_{0}}{y-y_{0}} .
$$

If M is positive definite, then $p\left(x_{0}, y_{0}\right)$ is a minimum point since $f\left(x+x_{0}, y+y_{0}\right)>f\left(x_{0}, y_{0}\right)$ and if M is negative definite, then $p\left(x_{0}, y_{0}\right)$ is a maximum point.

