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The Tangent Plane

In this lecture, we will show that condition 3 in the definition of a regular
surface S guarantees that for every p € S, the set of tangent vectors to
the parametrized curves of S, passing through p, constitutes a plane.

By a tangent vector to S, at a point p € S, we mean the tangent vector
a/(0) of a differentiable parametrized curve o : (—¢,€) — S with

a(0) = p.

Proposition

Let x : U C R?> — S be a parametrization of a regular surface S and let
q € U. The vector subspace of dimension 2,

dx,(R?) C R?,

coincides with the set of tangent vectors to S and x(q).
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Proof.

[

By the above proposition, the plane dx,(IR?), which passes through
x(q) = p, does not depend on the parametrization x. This plane will be
called the tangent plane to S at p and will be denoted T,(S5).






The Tangent Plane

1. Basis of T,(S):



The Tangent Plane

1. Basis of T,(S):

2. The coordinate of w € T,(S) with respect to x,, X,:



The Tangent Plane

1. Basis of T,(S):

2. The coordinate of w € T,(S) with respect to x,, X,:

3. Normal Vector N(p) of T,(S):

By fixing a parametrization x : U C R?2 — S at p € S, we can make a
definite choice of a unit normal vector at each point g € x(U) by the rule

Xy N\ Xp

N(q) = (q).

I A x|

Thus, we obtain a differentiable map N : x(U) — R3.



The Differential of a Map

Moving Between Surfaces

With the notion of a tangent plane, we can talk about the differential of
a (differentiable) map between surfaces. Let S; and S, be two regular
surfaces and let o : V C 57 — 5, be a differentiable mapping of an open
set V of 51 into S5. If p € V/, we know that every tangent vector

w € T,(51) is the velocity vector o/(0) of a differentiable parametrized
curve a : (—e,€) — V with a(0) = p. The curve 8 = ¢ o «v is such that
B(0) = ¢(p), and therefore 5(0) is a vector of T,(,)(52).
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The Differential of a Map

Moving Between Surfaces

With the notion of a tangent plane, we can talk about the differential of
a (differentiable) map between surfaces. Let S; and S, be two regular
surfaces and let o : V C 57 — 5, be a differentiable mapping of an open
set V of 51 into S5. If p € V/, we know that every tangent vector

w € T,(51) is the velocity vector o/(0) of a differentiable parametrized
curve a : (—e,€) — V with a(0) = p. The curve 8 = ¢ o «v is such that
B(0) = ¢(p), and therefore 5(0) is a vector of T,(,)(52).

Proposition

In the discussion above, given w, the vector 3'(0) does not depend on
the choice of . The map dyp, : Tp(S1) — T p)(S2) defined by
dop(w) = 3'(0) is linear.

Definition

The linear map dy,, is called the differential of ¢ at p € 5;. In a similar
way we define the differential of a (differentiable) function
f:UCS—RatpeUasa linear map df, : T,(S) — R.



Example 1

Let v € R3 be a unit vector and let h: S — R, h(p) =v-p, p€ S, be
the height function. To compute dh,(w), w € T,(S),



Helpful Hints

Key Techniques on Using

» Differentiation
» Tangent Plane

» Inverse Function Theorem



Helpful Hints

Key Techniques on Using

» Differentiation
» Tangent Plane

» Inverse Function Theorem

First,

» Try your best to make connections that set up some equations that
you can differentiate



Helpful Hints

Key Techniques on Using

» Differentiation
» Tangent Plane

» Inverse Function Theorem

First,

» Try your best to make connections that set up some equations that
you can differentiate

» Try to set your coordinates smartly to use the tangent plane



Helpful Hints

Key Techniques on Using

» Differentiation
» Tangent Plane

» Inverse Function Theorem

First,

» Try your best to make connections that set up some equations that
you can differentiate

» Try to set your coordinates smartly to use the tangent plane

» Try to set up certain functional relationships so that you can use the
Inverse Function Theorem



Examples

Proposition

If S; and S, are regular surfaces and ¢ : U C 51 — S, is a differentiable
mapping of an open set U C S; such that the differential dyp, of ¢ at
p € U is an isomorphism, then ¢ is a local diffeomorphism at p.
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Show that if all normals to a connected surface pass through a fixed
point, the surface is contained in a sphere.

Solution
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Examples

Do Carmo, p. 90, #15

Show that if all normals to a connected surface pass through a fixed
point, the surface is contained in a sphere.

Solution

Without loss of generality, assume that all normals pass through the
origin. Let x(u, v) be a parametrization of S at p. Say

x(u,v) = (x(u,v),y(u,v),z(u,v)). To show that the image of x is
contained in a sphere, we will show that ||x(u, v)||? is constant.

Since all the normals to the surface pass through the origin, we may write
k(u,v)N(u,v) =x(u,v), where N(u, v) is the normal to the surface at
the point x(u, v). Then we compute

0 2 0 o 2 2

2w )IP = 2 (v + ¥ wv) + 20 v)
B Ox dy 0z
= 2x(u, v)% + 2y(u, v)% + 2z(u, v)%

=2kN -x, = 0.
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Solution (cont'd)

Similarly, %Hx(u, v)||? = 2kN - x, = 0. Thus, ||x(u, v)||? is constant, so
x(u, v) is contained in a sphere. By the connectedness of S, S must lie
on the same sphere. ]



Examples

Solution (cont'd)

Similarly, %Hx(u7 v)||? = 2kN - x, = 0. Thus, ||x(u, v)||? is constant, so
x(u, v) is contained in a sphere. By the connectedness of S, S must lie
on the same sphere. ]

Remark
Let f : R? — R be given by f(u,v) = ||x(u, v)||?. Then
df, = (%, %) = (0,0) by Proposition 9, so f is constant on U.



Examples

Solution (cont'd)

Similarly, %Hx(u7 v)||? = 2kN - x, = 0. Thus, ||x(u, v)||? is constant, so
x(u, v) is contained in a sphere. By the connectedness of S, S must lie
on the same sphere. ]

Remark

Let f : R? — R be given by f(u,v) = ||x(u, v)||?. Then

df, = (%, %) = (0,0) by Proposition 9, so f is constant on U.
Remark

We cannot use a similar method to show #4, p. 23, because if we show
that ||x(t)|| is constant, then x(t) lies on a sphere, but this does not
imply that x(t) is contained in a circle,
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then this plane coincides with the tangent plane of S at p.
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Examples

Do Carmo, p. 90, #18

Prove that if a regular surface S meets a plane P in a single point p,
then this plane coincides with the tangent plane of S at p.

Solution

Let us set up a coordinate system with the origin at p and with P
coinciding with the xy plane. Since S meets P only at p, p must be a
critical point of z when we view a neighborhood of p as a graph of

z=f(x,y).

To show that T,(S) = P, it suffices to show that T,(S) C P, since
dim T,(S) =dim P = 2.

Let v € T,(S). Then there is some « : (—¢,€) — S with a(0) = p such
that v = a/(0) = (x’(0), y’(0), 2’(0)). Since z(0) is a critical point of 0,
it follows that z’(0) = 0. Then v = (x’(0), y’(0),0) € P. Thus,

T,(S) C P. O



Something Useful Later On

Say z = f(x,y) and p = (xp, ¥o) is the critical point of the function
z="f(x,y) (ie., %(p) = g—;(p) = 0). Now, using Taylor expansion, we
have

f(x + X0,y + o) = f(x0, ¥0) +W€;_;ﬁ)

82f( O’ f

P) LR (x—x

+ (X — X0 VYV — yo) 852 > +
oL(p) SE(p)) Y~y

A 7

M
or
X — X0
f(x+x0,y +y0) — f(x0,00) = (x—Xx y—yo) M (y—yo) -

If M is positive definite, then p(xp, yo) is @ minimum point since
f(x 4+ xo0,yY + Yo) > f(x0,¥0) and if M is negative definite, then p(xo, yo)
IS @ maximum point.
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