
Lecture 8: The Tangent Plane

Prof. Weiqing Gu

Math 142:

Di↵erential Geometry



The Tangent Plane

In this lecture, we will show that condition 3 in the definition of a regular

surface S guarantees that for every p 2 S , the set of tangent vectors to

the parametrized curves of S , passing through p, constitutes a plane.

By a tangent vector to S , at a point p 2 S , we mean the tangent vector

↵0
(0) of a di↵erentiable parametrized curve ↵ : (�✏, ✏) ! S with

↵(0) = p.

Proposition
Let x : U ⇢ R2 ! S be a parametrization of a regular surface S and let

q 2 U. The vector subspace of dimension 2,

dx

q

(R2

) ⇢ R3,

coincides with the set of tangent vectors to S and x(q).
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The Tangent Plane

Proof.

By the above proposition, the plane dx

q

(R2

), which passes through

x(q) = p, does not depend on the parametrization x. This plane will be

called the tangent plane to S at p and will be denoted T

p

(S).
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The Tangent Plane

1. Basis of T
p

(S):

2. The coordinate of w 2 T
p

(S) with respect to x

u

, x
v

:

3. Normal Vector N(p) of T
p

(S):
By fixing a parametrization x : U ⇢ R2 ! S at p 2 S , we can make a

definite choice of a unit normal vector at each point q 2 x(U) by the rule

N(q) =

x

u

^ x

p

kx
u

^ x

p

k (q).

Thus, we obtain a di↵erentiable map N : x(U) ! R3

.
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The Di↵erential of a Map

Moving Between Surfaces
With the notion of a tangent plane, we can talk about the di↵erential of

a (di↵erentiable) map between surfaces. Let S

1

and S

2

be two regular

surfaces and let ' : V ⇢ S

1

! S

2

be a di↵erentiable mapping of an open

set V of S

1

into S

2

. If p 2 V , we know that every tangent vector

w 2 T

p

(S

1

) is the velocity vector ↵0
(0) of a di↵erentiable parametrized

curve ↵ : (�✏, ✏) ! V with ↵(0) = p. The curve � = ' � ↵ is such that

�(0) = '(p), and therefore �0
(0) is a vector of T'(p)

(S

2

).

Proposition
In the discussion above, given w, the vector �0

(0) does not depend on

the choice of ↵. The map d'
p

: T

p

(S

1

) ! T'(p)

(S

2

) defined by

d'
p

(w) = �0
(0) is linear.

Definition
The linear map d'

p

is called the di↵erential of ' at p 2 S

1

. In a similar

way we define the di↵erential of a (di↵erentiable) function

f : U ⇢ S ! R at p 2 U as a linear map df

p

: T

p

(S) ! R.
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Example 1
Let v 2 R3

be a unit vector and let h : S ! R, h(p) = v · p, p 2 S , be

the height function. To compute dh

p

(w), w 2 T

p

(S),



Helpful Hints

Key Techniques on Using

I
Di↵erentiation

I
Tangent Plane

I
Inverse Function Theorem

First,

I
Try your best to make connections that set up some equations that

you can di↵erentiate

I
Try to set your coordinates smartly to use the tangent plane

I
Try to set up certain functional relationships so that you can use the

Inverse Function Theorem
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Examples

Proposition
If S

1

and S

2

are regular surfaces and ' : U ⇢ S

1

! S

2

is a di↵erentiable

mapping of an open set U ⇢ S

1

such that the di↵erential d'
p

of ' at

p 2 U is an isomorphism, then ' is a local di↵eomorphism at p.



Examples

Do Carmo, p. 90, #15
Show that if all normals to a connected surface pass through a fixed

point, the surface is contained in a sphere.

Solution

Without loss of generality, assume that all normals pass through the

origin. Let x(u, v) be a parametrization of S at p. Say

x(u, v) = (x(u, v), y(u, v), z(u, v)). To show that the image of x is

contained in a sphere, we will show that kx(u, v)k2

is constant.

Since all the normals to the surface pass through the origin, we may write

k(u, v)N(u, v) = x(u, v), where N(u, v) is the normal to the surface at

the point x(u, v). Then we compute

@

@u

kx(u, v)k2

=

@

@u

(x

2

(u, v) + y

2

(u, v) + z

2

(u, v))

= 2x(u, v)

@x

@u

+ 2y(u, v)

@y

@u

+ 2z(u, v)

@z

@u

= 2kN · x
u

= 0.
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Examples

Solution (cont’d)
Similarly,

@
@v

kx(u, v)k2

= 2kN · x
v

= 0. Thus, kx(u, v)k2

is constant, so

x(u, v) is contained in a sphere. By the connectedness of S , S must lie

on the same sphere.

Remark
Let f : R2 ! R be given by f (u, v) = kx(u, v)k2

. Then

df

p

=

�
@f

@u

, @f

@v

�
= (0, 0) by Proposition 9, so f is constant on U.

Remark
We cannot use a similar method to show #4, p. 23, because if we show

that kx(t)k is constant, then x(t) lies on a sphere, but this does not

imply that x(t) is contained in a circle.
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Examples

Do Carmo, p. 90, #18
Prove that if a regular surface S meets a plane P in a single point p,

then this plane coincides with the tangent plane of S at p.

Solution
Let us set up a coordinate system with the origin at p and with P

coinciding with the xy plane. Since S meets P only at p, p must be a

critical point of z when we view a neighborhood of p as a graph of

z = f (x , y).

To show that T

p

(S) = P, it su�ces to show that T

p

(S) ⇢ P, since

dim T

p

(S) = dim P = 2.

Let v 2 T

p

(S). Then there is some ↵ : (�✏, ✏) ! S with ↵(0) = p such

that v = ↵0
(0) = (x

0
(0), y 0

(0), z 0
(0)). Since z(0) is a critical point of 0,

it follows that z

0
(0) = 0. Then v = (x

0
(0), y 0

(0), 0) 2 P. Thus,

T

p

(S) ⇢ P.
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Something Useful Later On

Say z = f (x , y) and p = (x

0

, y
0

) is the critical point of the function

z = f (x , y) (i.e.,

@f

@x

(p) =

@f

@y

(p) = 0). Now, using Taylor expansion, we

have

f (x + x

0

, y + y

0

) = f (x

0

, y
0

) +

⇠⇠⇠⇠⇠⇠⇠⇠:0⇣
@f

@x

(p)

@f

@y

(p)

⌘✓
x � x

0

y � y

0

◆

+
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0

�
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@2
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@y
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(p)

!

| {z }
M

✓
x � x
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y � y

0

◆
+ · · · ,

or

f (x + x

0

, y + y

0

)� f (x

0

, y
0

) =

�
x � x

0

y � y

0

�
M

✓
x � x

0

y � y

0

◆
.

If M is positive definite, then p(x

0

, y
0

) is a minimum point since

f (x + x

0

, y + y

0

) > f (x

0

, y
0

) and if M is negative definite, then p(x

0

, y
0

)

is a maximum point.




